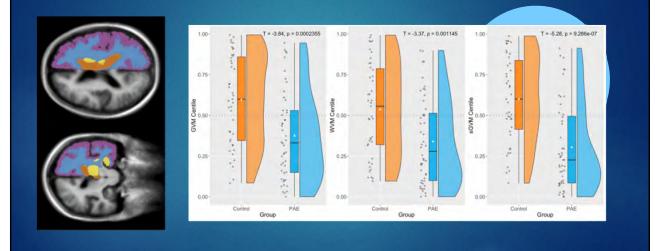

Specific Aims

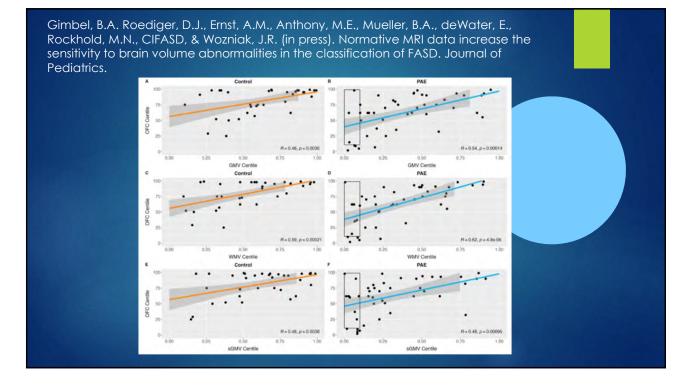
<u>Aim 1.</u> Five sessions active tDCS (n=30) vs. sham tDCS (n=30) with CT (n=60; all participants). <u>Hyp1:</u> Active tDCS -> sustained attention (CPT) and parent-reported ADHD symptoms compared to sham tDCS over 5 sessions.

<u>Aim 2.</u> Quantify dose-response. <u>Hyp2:</u> With CT (n=60; all participants), 10 active tDCS sessions (n=30) -> sustained attention (CPT) and parent-reported ADHD symptoms compared to 5 active + 5 sham sessions (n=30).

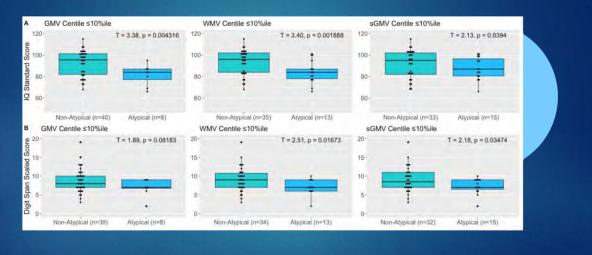
<u>Aim 3.</u> Durability. <u>Hyp3:</u> Two months post-intervention, sustained attention (CPT) improvements vs. baseline performance will remain. <u>Hyp4:</u> Dosage will be related to durability (10>5)

<u>Aim 4</u> (exploratory): fMRI -- brain network activity between baseline and 5 sessions (active tDCS vs. sham tDCS). <u>Hyp5:</u> 5 sessions of active tDCS (n=15) will enrich connectivity compared to 5 sessions of sham tDCS (n=15).




Interactions

- <u>Miguel del Campo, UCSD</u> Completed training of multiple personnel; Data collected on 14 participants; Awaiting database construction (will <u>enter data</u> or pass datasheets to UCSD)
- Sarah Mattson, SDSU Participants being sent to BRAIN-online at conclusion of study
 - > Spinoff project (Blake Gimbel: grant to study BRAIN-online and clinical neuropsych)
- Mike Suttie, Oxford 14 participant images shared
 - Canfield system
- Leah Wetherill, Indiana U.
 - Data dictionary complete
 - GUIDs being generated for each participant
 - Upload tests completed
 - > All participant data uploaded and current



Gimbel, B.A. Roediger, D.J., Ernst, A.M., Anthony, M.E., Mueller, B.A., deWater, E., Rockhold, M.N., CIFASD, & Wozniak, J.R. (in press). Normative MRI data increase the sensitivity to brain volume abnormalities in the classification of FASD. Journal of Pediatrics.

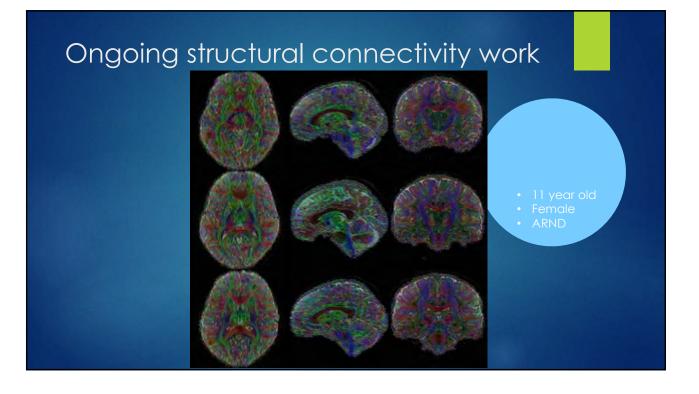
Gimbel, B.A. Roediger, D.J., Ernst, A.M., Anthony, M.E., Mueller, B.A., deWater, E., Rockhold, M.N., CIFASD, & Wozniak, J.R. (in press). Normative MRI data increase the sensitivity to brain volume abnormalities in the classification of FASD. Journal of Pediatrics.

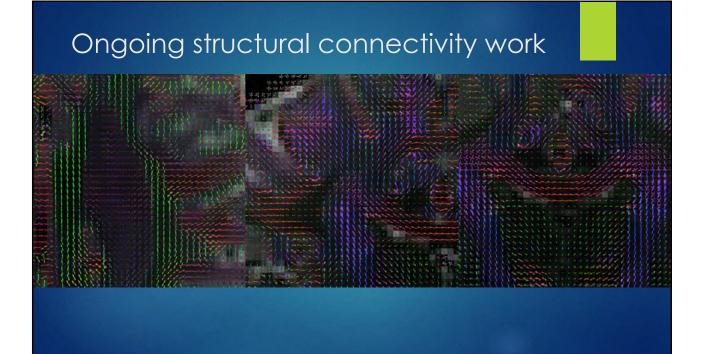
Gimbel, B.A. Roediger, D.J., Ernst, A.M., Anthony, M.E., Mueller, B.A., deWater, E., Rockhold, M.N., CIFASD, & Wozniak, J.R. (in press). Normative MRI data increase the sensitivity to brain volume abnormalities in the classification of FASD. Journal of Pediatrics.

	Sensitivity	Specificity	PPV	NPV	Accuracy
Height or weight ≤ 10%ile	10.42%	93.02%	62.50%	48.19%	49.45%
OFC <mark>≤ 10%ile</mark>	11.11%	100.0%	100.0%	46.67%	50.0%
≥ 2 facial features	26.67%	94.29%	85.71%	50.0%	56.25%
3 facial features	6.67%	100.0%	100.0%	45.45%	47.50%
Low IQ (≤ 1.5 SD below mean)	18.75%	100.0%	100.0%	51.85%	56.67%
GMV or WMV or sGMV ≤ 10%ile	35.42%	95.35%	89.47%	56.94%	63.74%
OFC ≤ 10%ile or brain atypicality	36.96%	94.44%	89.47%	53.97%	62.20%

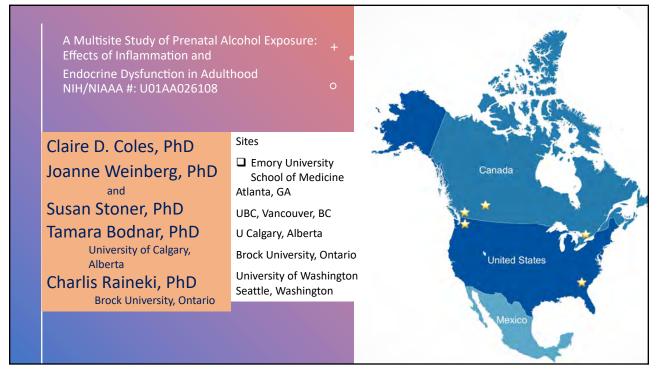
Additional papers from CIFASD4 year 2

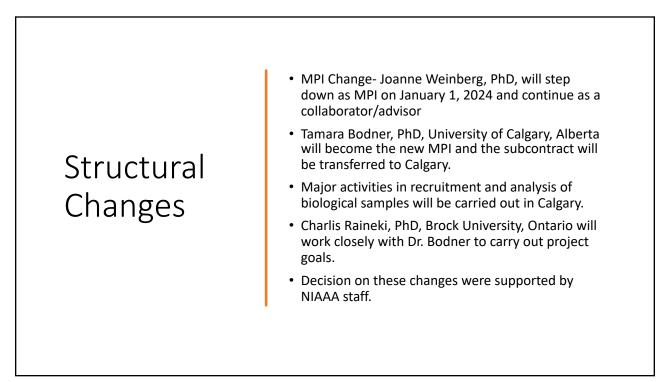
Smith, S.M., Weathers, T.D., Virdee, M.S., Schwantes-An, T.H., Mattson, S.N., Coles, C., Kable, J., Sowell, E., <u>Wozniak, J.R.</u>, Wetherill, L., and the CIFASD. (in press). Polymorphisms in the choline transporter SLC44A1 are associated with reduced cognitive performance in both normotypic and prenatal alcohol-exposed children. *American Journal of Clinical Nutrition*.


Hyland, M., Courchesne, N., Bernes, G., <u>Wozniak, J.R.</u>, Jones, K.L., del Campo, M., Riley, E., & Mattson, S. (2023). Results of an FASD Screeni Tool are Associated with Neuropsychological and Behavioral Measures. *Alcoholism: Clinical and Experimental Research*, 47(8). 1560-1569. DOI: 10.1111/acer15133


Gimbel, B.A., Roediger, D.J., Ernst, A.M., Anthony, M.E., deWater, E., Rockhold, M.N., Mueller, B.A., Mattsor, S.N., Jones, K.L., Riley, E.P., Lim, K.O., CIFASD, & <u>Wozniak, J.R.</u> (2023). Atypical developmental trajectories of white matter microstructure in prenatal alcohol exposure: Preliminary evidence from neurite orientation dispersion and density imaging (NODDI). *Frontiers in Neuroscience*, DOI: 10.3389/fnins.2023.1172010

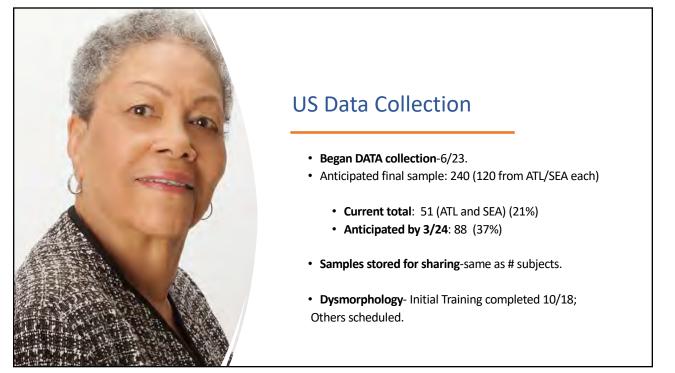
Gimbel, B.A., Roediger, D.J., Ernst, A.M., Anthony, M.E., deWater, E., Mueller, B.A., Rockhold, M.N., Schumacher, M.J., Mattson, S.N., Jones K.L., Lim, K.O., CIFASD, & <u>Wozniak, J.R.</u> (2023). Delayed cortical thinning in children and adolescents with prenatal alcohol exposure. *Alcoholism: Clinical and Experimental Research, doi: 10.1111/acer.15096*


Mattson, S.N., Jones, K.L., Chockalingam, G., Wozniak, J.R., Hyland, M.T., Courchesne-Krak, N.S., Del Campo, M., Riley, E.P., and the CIFASD. (2023). Validation of the FASD-Tree as a screening tool for fetal alcohol spectrum disorders. *Alcoholism: Clinical and Experimental Research*, 47(2), 263-272; DOI: 10.1111/acer.14987

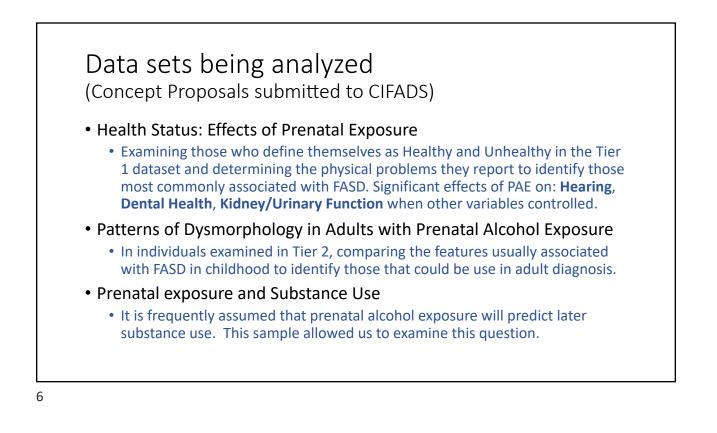

Bernes, G.A., Courschesne-Krak, N.S., Hyland, M.T., Villodas, M.T., Coles, C. D., Kable, J.A., May, P.A., Kalberg, W.O., Sowell, E. R., <u>Wozniak,</u> J.R., Jones, K.L., Riley, E.P., Mattson, S.N., and the CIFASD. (2022). Development and validation of a postnatal risk score that identifies children with prenatal alcohol exposure. *Alcoholism: Clinical and Experimental Research*, 46(1):52-65; DOI: 10.1111/acer.14987

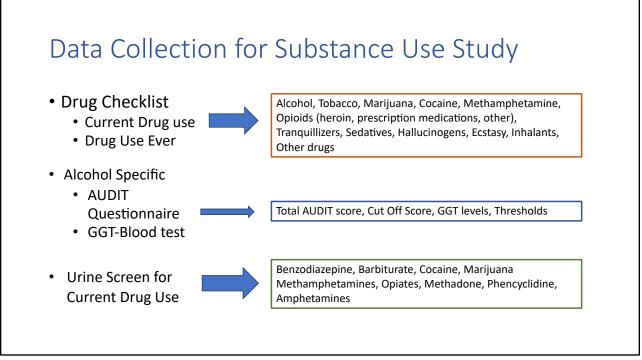
12/15/23 Atlanta Seattle Coles Weinberg Bodnar Raineki U01

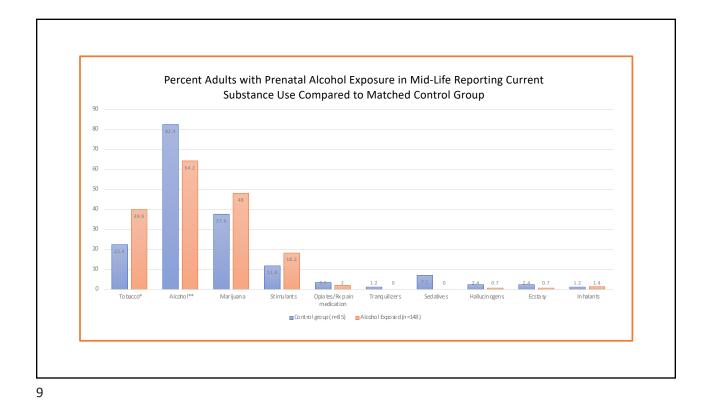
12/15/23 Atlanta Seattle Coles Weinberg Bodnar Raineki U01

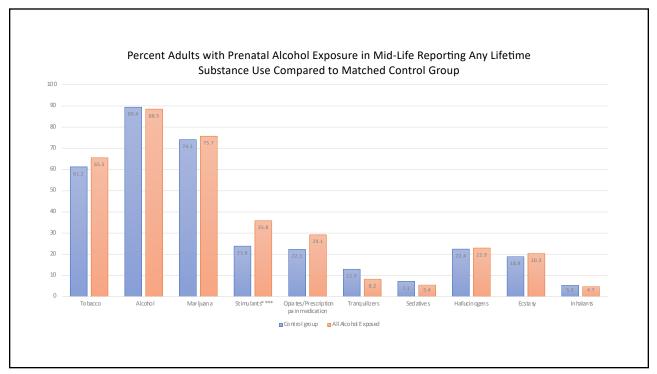

- +
 - USA Progress
 Checklist
 - IRB
 - Data Dictionary
 - Practice Data set
 - GUID Training
 - o # of subjects, Current
 - # of Subjects, Projected by end of Year 2
 - Samples Shared/To share
 - Dysmorphology Training
 - o 3-D Camera/Photographs

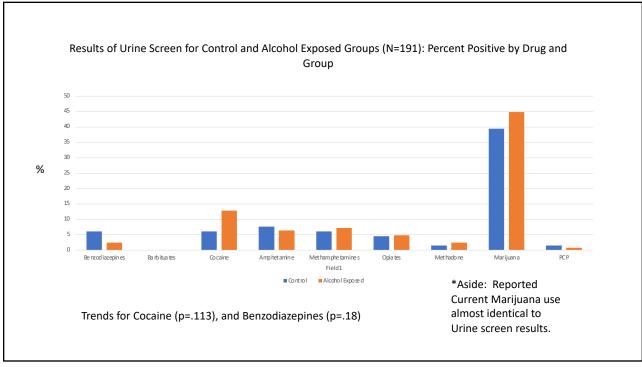
• **IRB**-sIRB obtained 9/22 for US site. Yearly renewal is not required for sIRBs.

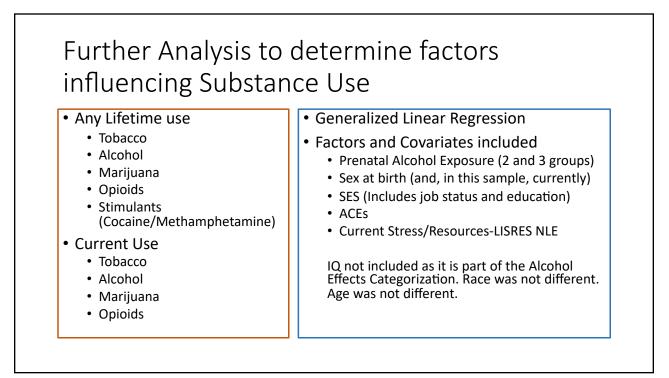

Data Sharing

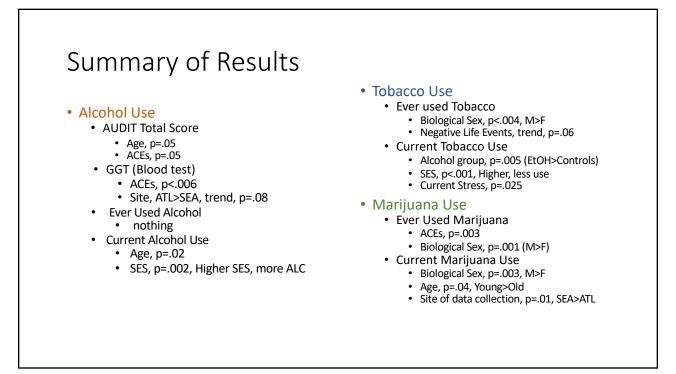

- Data Dictionary-Completed. Submitted to Indiana. Revised 12/8/23
- **Practice Data Set:** Submitted and amended. Corrections made and resubmitted. 12/14/2023

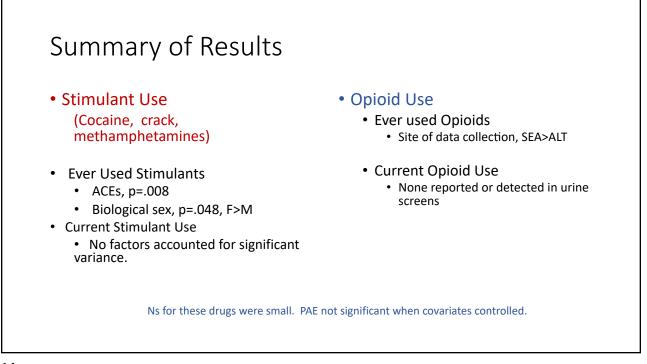


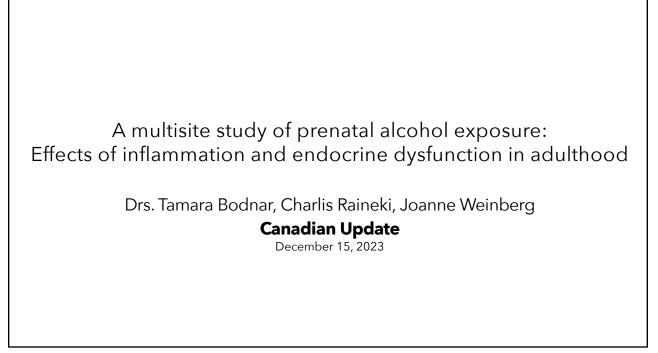


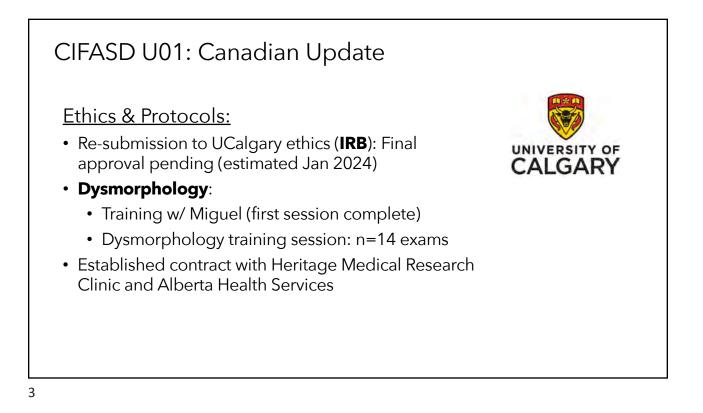





Demographics	Characteristic	Control Group (n=85)	Alcohol Group (n=148)
of Tier 2 Sample	Age at assessment	38.38 (5.1)	38.18 (6.16)
(N=233)	Sex at birth (% Female)	51%	55%
(N-255)	Race (% White/Black)	42.4/48.2%	35.8/49.3%
	Marital Status (% Partnered)	41.7%	36%
	Employment Status (FT/PT)*	75.3/16.5%	55.4/18.9%
	NIH Tool Box Fluid IQ*	98.7 (23.2)	81.8 (17.5)
	Hollingshead SES	40 (15.6)	28.65 (11.96)
	Adverse Childhood Experiences (ACES)*	2.0 (2.1)	3.68 (2.91)
*Groups are significantly	Positive Life T (LISRES)	65.8 (16.3)	63.1 (16.8)
different at the $p < .001$ level	Negative Life T (LISRES)	57.3 (14.0)	54.5 (13.1)

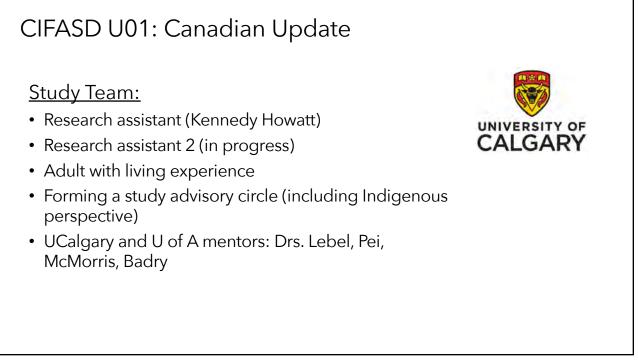


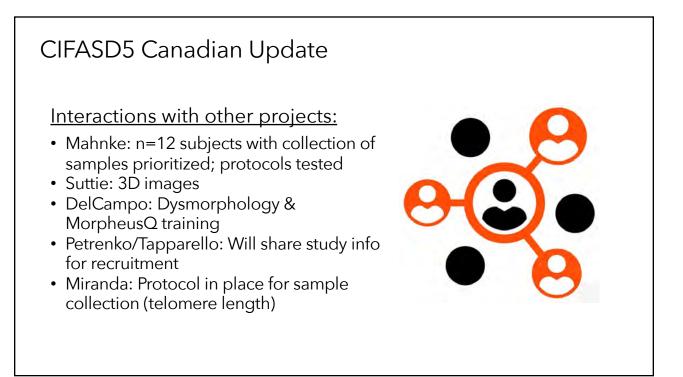




PLANS FOR FY 2024

- Finalize transfer of PI and subcontract to Calgary
- Continue ongoing data collection
- Transmit samples when interim goals reached
- Dissemination
 - Presentation at Seattle FASD Meeting
 - RSA
 - Complete papers

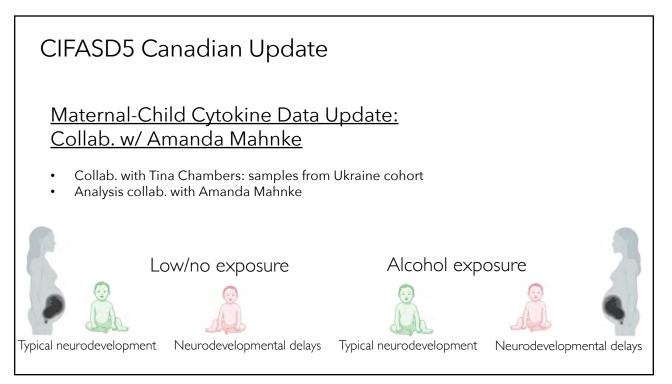


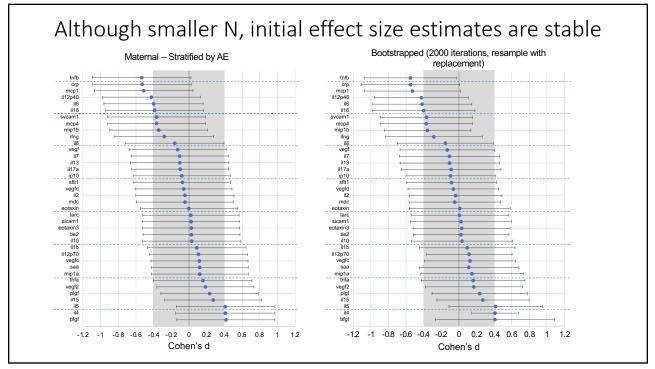


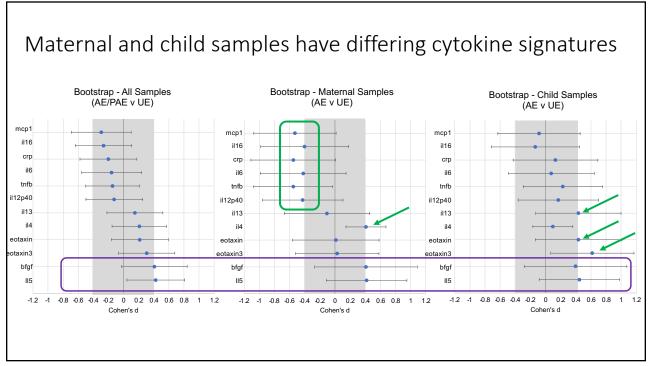
<text><list-item><list-item><list-item><list-item>

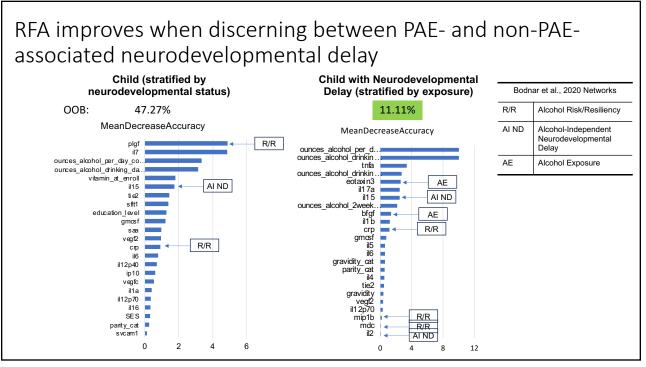
CIFASD U01: Canadian Update DCR update : Data dictionary complete Practice data submitted; approved Data upload: exemption submitted (IRB approval pending) GUID training: Complete, access pending

CIFASD U01: Canadian Update Pre-Recruitment: Goal n=42 enrolled & tested by end of year 2 Virtual study subjects: consented to be re-contacted (n=28) CanFASD 2023 Conference (n=20 participants expressed interest) Calgary Fetal Alcohol Network, Glenrose FASD clinic, Foothills FASD Assessment & Diagnostic Clinic & 24 additional community organizations and clinics FASD Conference in Seattle (2024): Will recruit subjects Recruitment collaborations with Drs. Lebel, Pei, & McMorris Older control group: Two neurologists at UCalgary to support Indigenous partners at UCalgary and community

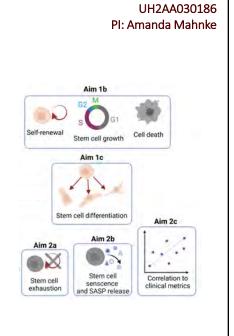



12/15/23 Canada Coles Weinberg Bodnar Raineki U01


CIFASD5 Canadian Update


Publications and presentations:

- Bodnar, T.S., Chao, A., Homan, P.J., Ellis, L., Raineki, C., & Weinberg, J. (2023) Impact of the COVID-19 pandemic on adults with Fetal Alcohol Spectrum Disorder: linking immune function to mental health status. *Front. Neurosci.* 17, 1-10.
- CanFASD Presentation: Evaluating the Impact of Prenatal Alcohol Exposure on Adult Health: Evidence for Risk and Resilience
- Upcoming FASD Seattle Presentation: Exploring health outcomes in adults with FASD: Evidence from the Canadian research study site
- Upcoming RSoA Presentation: Prenatal Alcohol Exposure Results in Long-Lasting Alterations in Immune Function: Evidence from a Multi-Site Study



Lifelong impact of PAE on stem cell dynamics and cellular aging

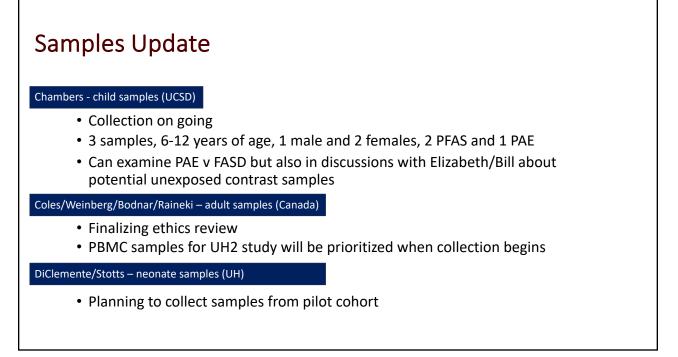
- Aim 1 Does PAE diminish stem cell function across the lifespan?
- Progress:
 - Two contrast samples commercially available adult PBMCs
 - Receiving child samples from Chambers/UCSD
- Aim 2 Does PAE induce or exacerbate stem cell aging?
- Progress:
 - Assays created for qPCR metrics of aging, including potential normalization transcripts
 - · Piloting flow cytometry assays for markers of aging

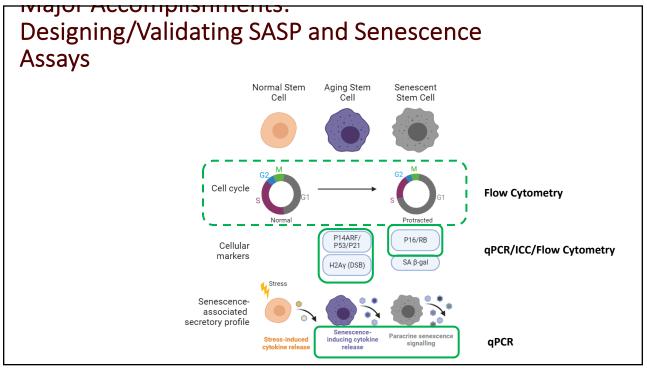
1

Lifelong impact of PAE on stem cell dynamics and cellular aging

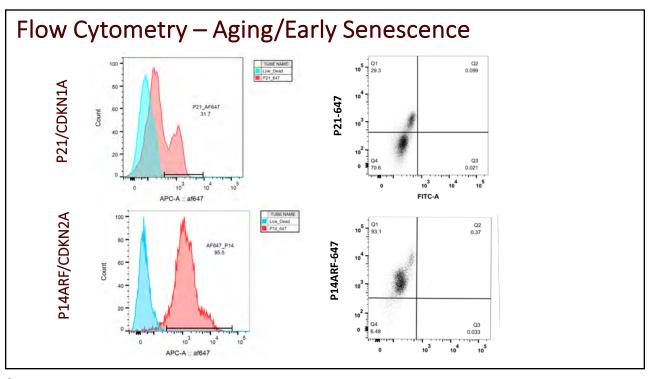
Mahnke Lab Updates

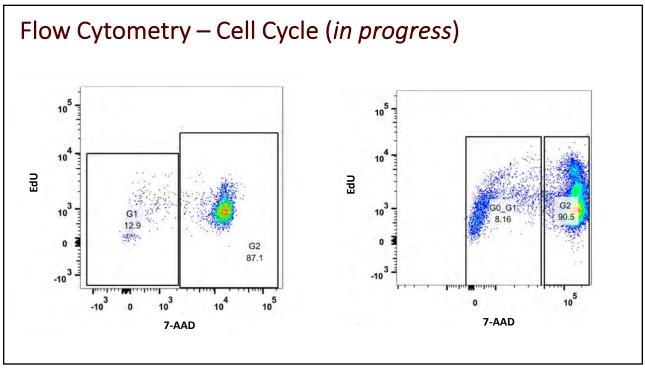
• IRB (exempt/not human subjects – Oct 2022)

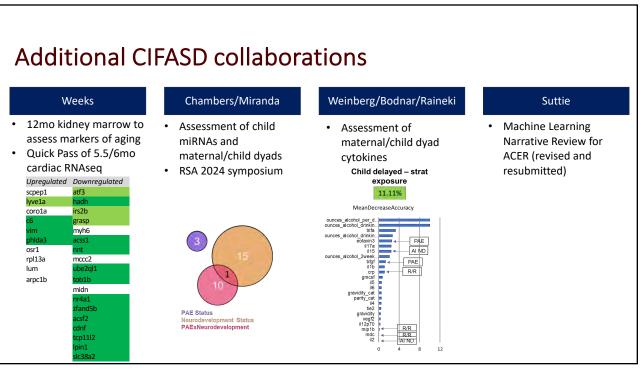

Data Coordination Resource


- Data dictionary created and approved
- Data dictionary finalized and portal created
- Ready to upload data as it is created

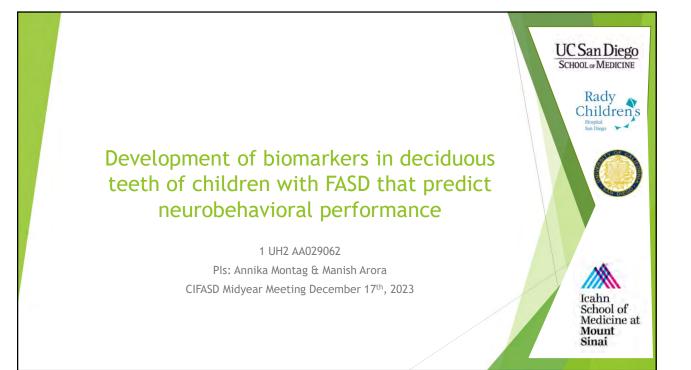
Contrast Adult hiPSCs


- ~40 yo
- Male induced and undergoing expansion
- Female induction ongoing


UH2AA030186 PI: Amanda Mahnke



Designin Senescer	-		ng SASP a	and
qPCR pan	el for SA	SP and Se	enescence-	 Immunomarkers for SASP and Senescence
Complete				
·				15 min UV treatment DAPI
Gene Target	Role	Sequenced		vH2Ax
IL-6	SASP	Yes	Validated	
VEGFA	SASP	Yes	Validated	
CXCL8	SASP	Yes	Validated	
IL-1A	SASP	Yes	Validated	
IL-7	SASP	Yes	Validated	DAPI 👘
CXCL8 (IL-8)	SASP	Yes	Validated	p14ARF
CSF2(GM-CSF) VEGEC	SASP SASP	Yes Yes	Validated Validated	
GLB1	Senescence	Yes	Validated	
p21/CDKN1A	Senescence	Yes	Validated	the second se
p16INK4A/CDKN2A	Senescence	Yes	Validated	
p14ARF/CDKN2A	Senescence	Yes	Validated	
CDKN2B	Senescence	Yes	Validated	
LMNB1	Senescence	Yes	Validated	
TP53	Senescence	Yes	Validated	DAPI p53 p21 Merge
NOTCH1	Senescence	Yes	Validated	
B2M	Housekeeping	Yes	Validated	
HPRT1	Housekeeping	Yes	Validated	
GAPDH	Housekeeping	Yes	Validated	
ACTB	Housekeeping	Yes	Validated	3/9 · · · · · · · · · · · · · · · · · · ·
ATP5B	Housekeeping	Yes	Validated	
PGK1	Housekeeping	Yes	Validated	

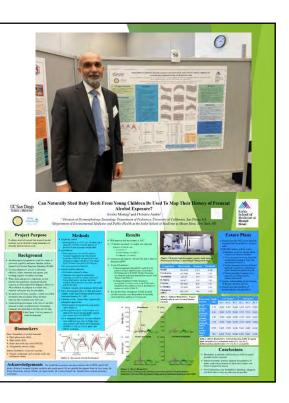


Goals for April

- hiPSC creation and assessments started for child and adult samples
- In the middle of collection of neonate samples from DiClemente/Stotts pilot cohort
- NCE to continue the work/analysis

Future Directions

- Analysis of transcripts in hematopoietic niche of 5mo rat and 15mo zebrafish models of PAE
 - · Potential supporting evidence for human stem cell data
 - May identify additional assessments
- Therapeutics for PAE-induced stem cell aging grant
 - Potential therapeutic identification with supporting preclinical models
- Assessment panel for peripheral stem cells (CD34+ PBMCs) for PAEinduced precocious stem cell aging


Specific Aims

Aim 1. Determine the sensitivity and specificity of direct and indirect biomarkers of PAE in deciduous teeth of 25 children with FASD and 25 children with known absence of PAE.

Aim 2. Assess associations among magnitude and gestational timing of PAE identified in the deciduous teeth of 25 children with FASD and 25 children with known absence of PAE and neurobehavioral deficits.

Aim 3. Explore the interaction between PAE and exposures to neurotoxic and nutritive metals during prenatal and early life.

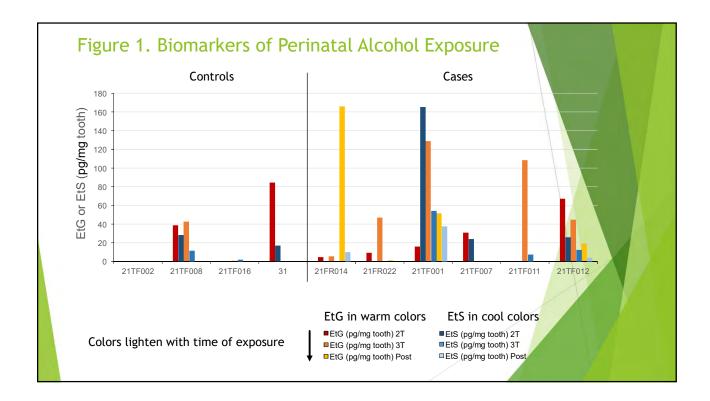
Aim 4. (Added Aim from R21) Explore potential biomarkers of co-exposures including cannabis, tobacco, and opioids.

Progress & Future Plans

Progress

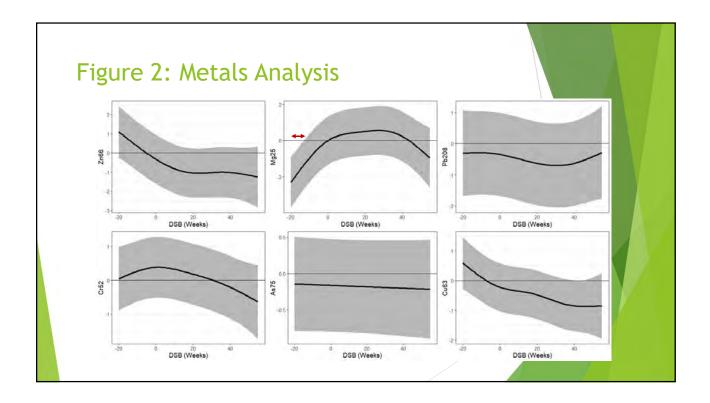
Г

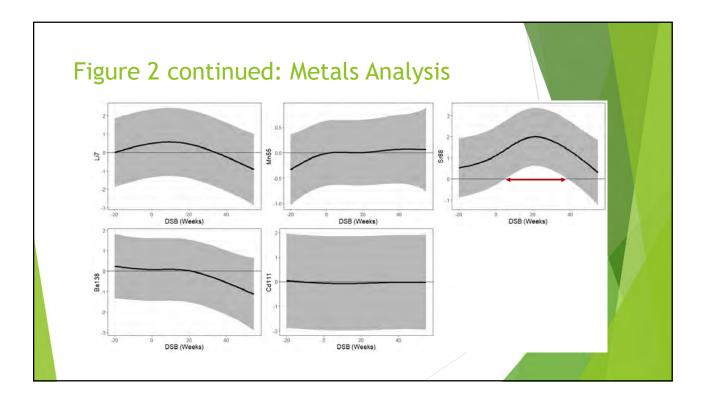
- Recruitment has been slow: 22 participants (17E, 5U) of 25E/25U goal recruited
- Methods have been more difficult to establish than anticipated necessitating additional recruitment under our pilot study IRB approvals and more time spent on methods
- CIFASD samples (34 teeth, 22E/12U) and non-CIFASD samples (43 teeth, 21E/20U) sent to Mt Sinai
- PAE biomarkers: EtG, EtS, FAEE (EM, EP, ES, EO) and PEth (1 and 2) assessed
 - Table 1. Biomarkers shown by trimester including second run of EtG and EtS
 - ▶ Figure 1. EtG and EtS data in figure format to show relative magnitudes and changes over time
 - TAble 2: EtG and EtS first and second run for comparison
 - Figure 2. Metals analysis on samples from 15 exposed and 5 unexposed participants
 - MPI change initiated: Welcome Dr. Manish Arora

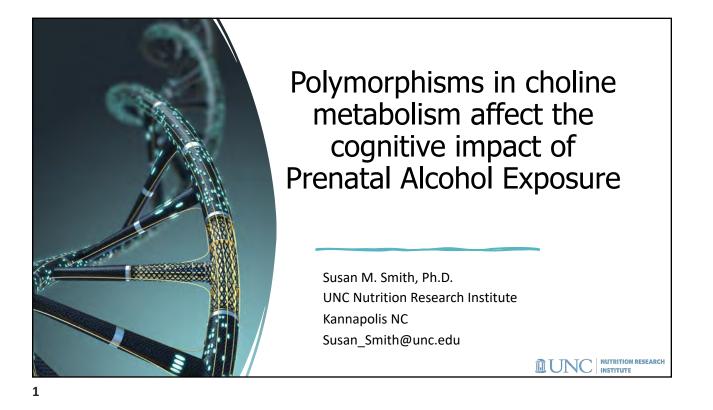

Future Plans

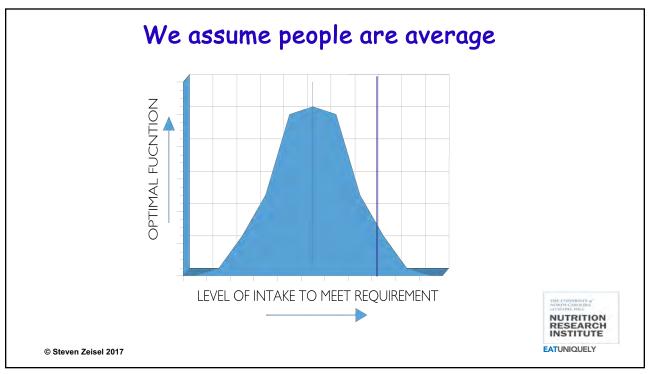
- Decision: whether methods are established or require more work by end of year
- Assess and analyze
 - Previously unassessed samples for EtG, EtS, FAEEs, and PEth
 - all samples for indirect biomarkers: amino acids and cholesterol sulfate
 - all samples for co-exposures: cannabis, tobacco, opioids
- Obtain neurobehavioral data from Mattson and Wozniak
- Analysis of associations of exposures and NB outcomes
- Methods and associations manuscripts
- R01 submission

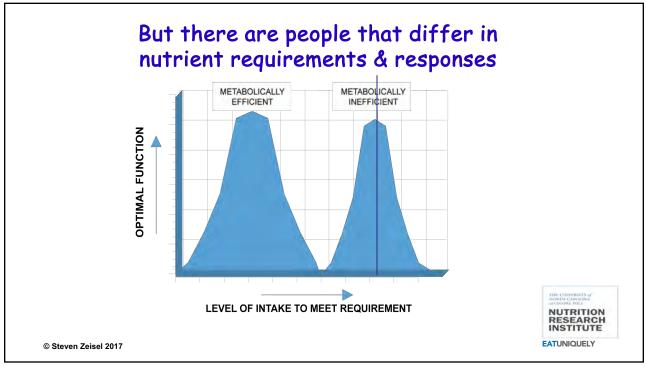
Other to date

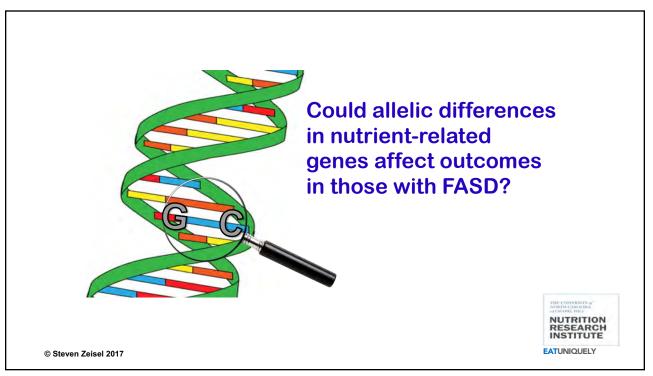

- All IRB materials and approvals for CIFASD and pilot study recruitment are valid through May 2024
- One manuscript: POC; Two conference presentations/ posters; One mention in popular literature "The Truth's in the Tooth" Analytical Scientist 2022

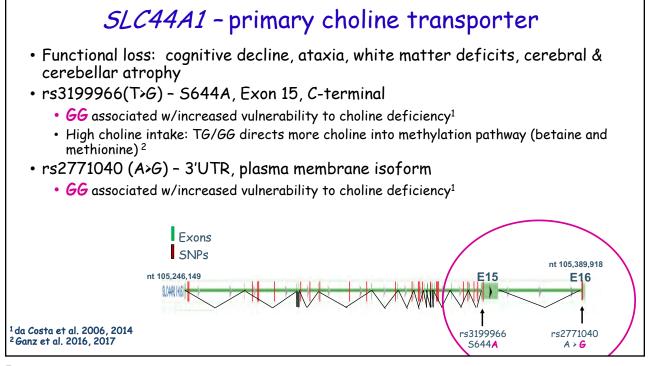

															(po:		е						
	2T 3T Post																						
EtG	EtS	EM	EP	ES	EO	PEth 1	PEth 2	EtG	EtS	EM	EP	ES	EO	PEth 1	PEth 2	EtG	EtS	EM	EP	ES	EO	PEth 1	PEth 2
								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38.7	28.2	0.0	0.0	0.0	0.0	0.0	0.0	42.7	11.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
								0.8	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
84.5 4.6	16.9 0.0	0.0	0.0	549.1 3590.3	0.3	0.0	0.0	0.0	0.0	0.1	41.1 0.0	1037.6	16.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0 93.4	0.0	0.0	0.0	0.0
9.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.4 46.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	93.4	0.0	0.0	0.0	0.0
16.0	165.1	0.0	0.0	0.0	0.0	0.0	0.0	128.6	54.2	0.0	0.0	0.0	0.0	0.0	0.0	51.6	37.5	0.0	0.0	0.0	0.0	0.0	0.0
30.8	24.0	0.0		1100.5	0.0	0.0	0.0	0.0	0.0	0.0	73.9	977.7	4.1	0.0	0.0	0.0	0.0	0.0	0.0	91.8	1.0	0.0	0.0
								108.5	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67.1	25.7	0.0	365.8	2157.7	0.0	0.0	0.0	44.6	12.4	13.6	19.5	502.0	2.1	0.0	0.0	19.1	4.0	1.4	33.4	31.8	1.3	0.0	0.0
	EtG			EtS		Ethyl	myristate	e (EM)	Ethyl	palmitat	e (EP)	Ethy	l stearat	e (ES)	Ethy	l oleate	(EO)	PEth 16	:0/18:1	(PEth 1)	PEth 1	6:0/18:2	(PEth 2)
2T	3T	Post	2T	3T	Post	2T	3T	Post	2T	3T	Post	2T	3T	Post	2T	3T	Post	2T	3T	Post	2T	3T	Post
	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0
38.7	42.7	0.0	28.2	11.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.8	0.0		2.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0
84.5	0.0	0.0	16.9	0.0	0.0	0.0	0.1	0.0	0.0	41.1	0.0	549.1	1037.6	0.0	0.3	16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.6	5.4	165.9	0.0	0.0	10.0	0.0	0.0	7.5	129.2	0.0	93.4	3590.3	220.2	140.4	0.0	0.0	19.7	0.0	0.0	0.0	0.0	0.0	0.0
9.2	46.9 128.6	1.1 51.6	0.0	0.0 54.2	0.0 37.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16.0 30.8	0.0	0.0	24.0	54.Z	37.5 0.0	0.0	0.0	0.0	79.5	73.9	0.0	1100.5	977.7	0.0 91.8	0.0	4.1	1.0	0.0	0.0	0.0	0.0	0.0	0.0
50.0	108.5	0.0	24.0	7.5	0.0	0.0	0.0	0.0	17.5	0.0	0.0	1100.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
67.1	44.6	19.1	25.7	12.4	4.0	0.0	13.6	1.4	365.8	19.5	33.4	2157.7		31.8	0.0	2.1	1.3	0.0	0.0	0.0	0.0	0.0	0.0

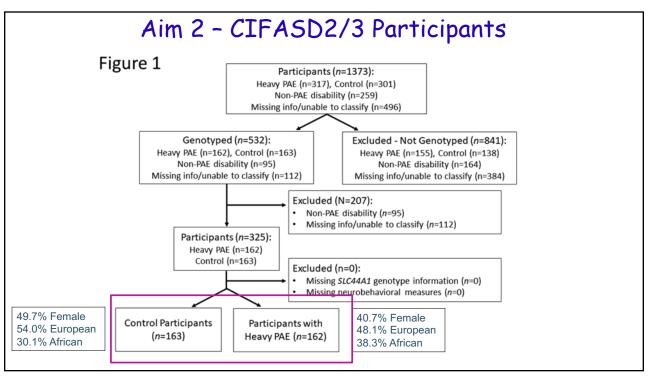


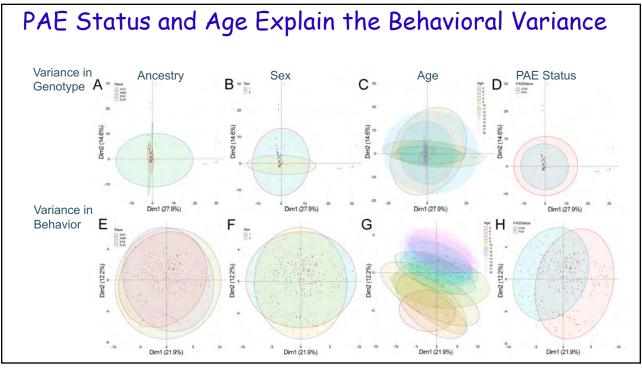

Table 2: EtG and EtS Biomarkers Comparing First and Second Runs

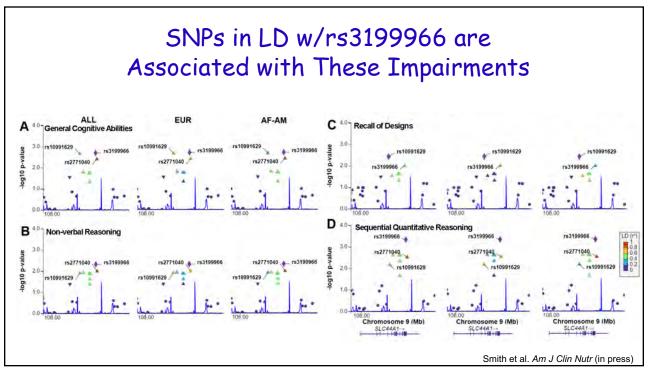

First	run					
	2 nd Tr	imester	3 rd Trir	nester	Post	natal
Donor	EtG (pg/mg tooth)	EtS (pg/mg tooth)	EtG (pg/mg tooth)	EtS (pg/mg tooth)	EtG (pg/mg tooth)	EtS (pg/mg tooth)
Control 1	-	-	0.00	0.00	0.00	0.00
Control 2	0.00	28.16	0.00	11.62	0.00	0.00
Control 3	-	-	0.00	85.39	0.00	0.00
Control 4	164.29	0.00	0.00	0.00	0.00	0.00
Case 1	66.89	0.00	84.52	0.00	159.63	12.18
Case 2	73.20	0.00	31.12	0.00	8.45	0.00
Case 3	0.00	230.49	0.00	55.88	0.00	43.73
Case 4	0.00	21.09	0.00	0.00	0.00	0.00
Case 5	-	-	0.00	16.96	0.00	0.00
Case 6	0.00	87.01	0.00	12.35	0.00	3.91
Seco	ond run					
	2nd T	rimester	3rd Tri	mester	Post	inatal
Donor ID	EtG (pg/mg tooth)	EtS (pg/mg tooth)	EtG (pg/mg tooth)	EtS (pg/mg tooth)	EtG (pg/mg tooth)	EtS (pg/mg tooth)
Control 1			0.00	0.00	0.00	0.00
Control 2	38.73	28.16	42.67	11.62	0.00	0.00
Control 3			0.79	2.05	0.00	0.00
Control 4	84.51	16.87	0.00	0.00	0.00	0.00
Case 1	4.63	0.00	5.45	0.00	165.91	9.99
Case 2	9.23	0.00	46.91	0.00	1.09	0.00
Case 3	16.01	165.07	128.65	54.19	51.56	37.51
Case 4	30.81	24.04	0.00	0.00	0.00	0.00
Case 5			108.49	7.49	0.00	0.00
Case 6	67.09	25.72	44.59	12.35	19.11	4.02

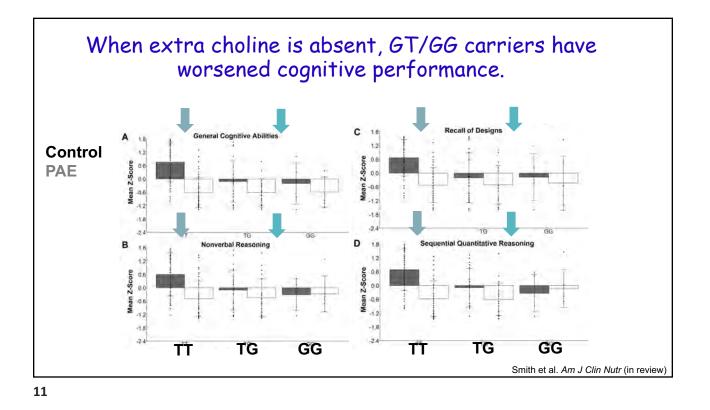


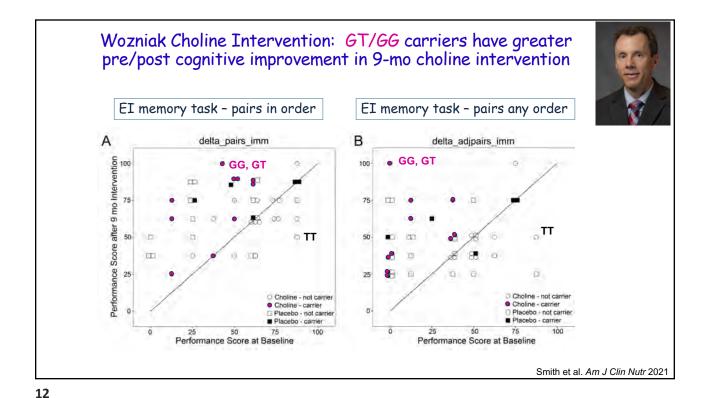


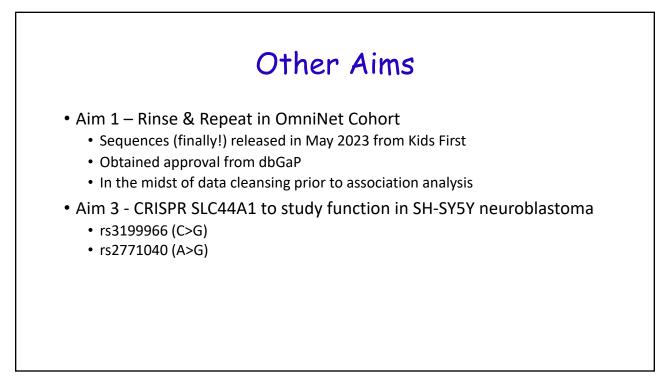


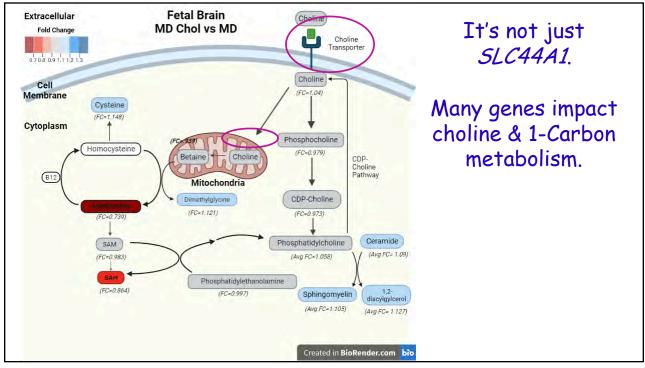


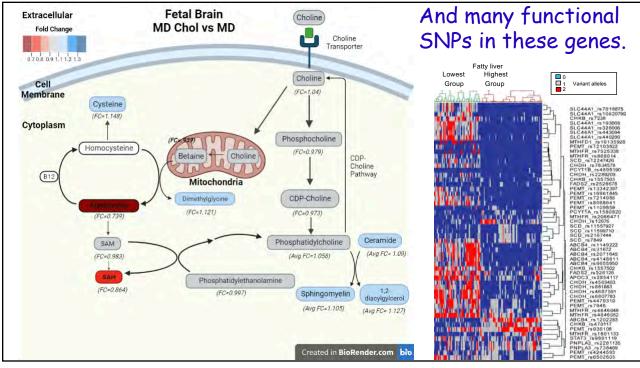





8 SNPs in *SLC44A1* are Associated with at Least One Behavioral Outcome


ID	Location	Туре	Ref/Alt	MAF, this cohort	MAF, European	MAF, African Amer.	Function
rs75106836	Intron 1	SNV	T > C	2.9%	0.04%	5.5%	unknown
rs105185127	Intron 1	SNV	C > T	3.7%	0.8%	11.0%	unknown
rs143438338	Intron 1	SNV	A > G	3.0%	0.04%	5.5%	unknown
rs59370172	Intron 1	SNV	C > T	3.0%	0.04%	5.6%	unknown
rs12347364	Intron 1	SNV	T > A	5.6%	5.0%	0.7%	unknown
rs10991629	Intron 3	SNV	C > T	18.7%	11.8%	36.3%	unknown
rs3199966	Exon 15	SNV	T > G	19.1%	9.0%	41.5%	increases choline need
rs2771040	Exon 16 (3' UTR)	SNV	A > G	21.3%	12.0%	43.8%	increases choline need
						Smith et al. A	m J Clin Nutr (in press

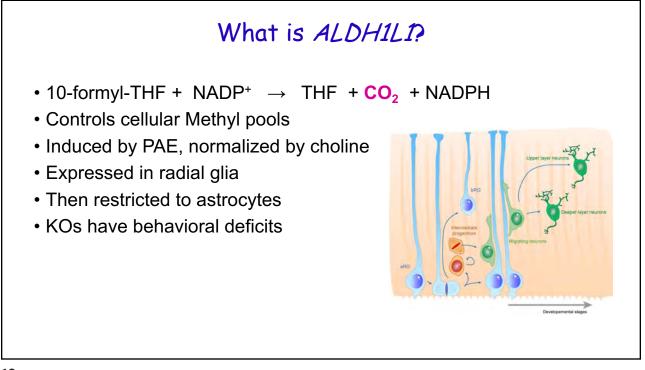

ssociations w/Executive Fu Learning, & Reaso	•	Memo	ry,
Cognitive Measure	SNP	ADDxPAE Q-Value	
Perseverations (Free and Cued Recall Total), Z-score (CVLT)	rs150185127	0.0200	
Serial Cluster Ratio, Z Score (CVLT)	rs12347364	0.0116	
Matrices (DAS-II)	rs59370172	0.0499	
Conners Executive Functioning	rs2771040	0.0116	
General Cognitive Abilities (DAS-II)	rs3199966 rs75106836	0.0116 0.0147	
Nonverbal Reasoning Cluster (DAS-II)	rs3199966	0.0114	
······ 3 ······(-·····)	rs2771040	0.0117	
	rs10991629	0.0118	
	rs12347364	0.0146	
Recall of Designs (DAS-II)	rs3199966	0.0204	
	rs2771040	0.0213	
	rs10991629	0.0145	
Sequential & Quantitative Reasoning (DAS-II)	rs3199966	0.0113	
	rs2771040	0.0113	
Internalizing behavior, V-score (VABS-2)	rs3199966	0.0116	
		Smith et al. An	n J Clin Nutr (ir

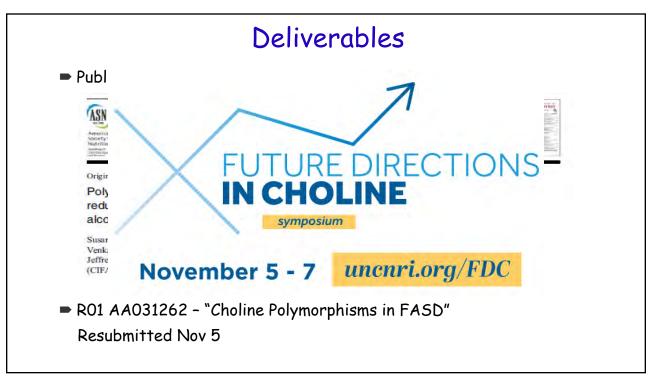


Wozniak Choline Intervention: 1C SNP Associations in All Participants

Gene	SNP	Q-Value	Outcome	Effect Allele (Major > Minor Allele)
BHMT	rs558133 rs558133 rs567754 rs567754	0.00076 0.00041 0.01236 0.00341	iib_tscore13 iib_tscore20 weight_z_physical.1 weight_pile_physical.1	Increased with G (T > G) Increased with G (T > G) Increased with C (C > T) Increased with C (C > T)
FMO3	rs2064074	0.04245	weight_pile_physical.3	Increased with A (A > G)
MTHFR	rs4846048 rs17421511 rs6667720	0.00809 0.04828 0.00809	t_score3.1 stanfbi_qr t_score3.1	Increased with A (A > G) Increased with G (G > T) Increased with T (T > C)
SHMT1	rs1979277	0.00565	t_score8.11	Increased with G (G > A)

Smith et al. Am J Clin Nutr (2021)


Choline-related Genes Associated w/General Cognitive Abilities in CIFASD2/3


Gene	Gene Name/Function	Alt Freq	P-adj	β±SE	Effect Size	Effect on Choline
SLC44A1	Choline Transporter CTL1	21.7%	0.0056	-0.72 ± 0.18	3.43	↑ Need
ALDH1L1	Cytosolic 10-Formyl THF Dehydrogenase	5.3%	3.43E-4	+0.79 ± 0.19	3.76	↓ Need
DMGDH	Dimethylglycine Dehydrogenase	19.1%	4.21E-4	+1.12 ± 0.33	3.63	↓ Need
MTHFD1L	10-formyl-THF Synthetase	8.6%	3.24E-4	-0.81 ± 0.22	3.89	↑ Need

17

Gene x Exposure associations (ADD model) for ALDH1L1 variant rs3796191(T>C) (L254P).

Behavioral Measure	Beta ± SE	Effect Size	p-adj	Minor Allele Effect
General Cognitive Fcn ^a	+0.89 ± 0.21	4.80	0.0003	Better performance
Seq Quant Reasoning ^a	+0.78 ± 0.19	4.19	0.0012	Better performance
Global Executive Fcn ^b	+0.94 ± 0.27	3.43	0.0184	Better performance
Nonverbal Retrieval ^c	+1.25 ± 0.33	3.79	0.0065	Better performance
Free-Cued Recall ^d	1.06 ± 0.26	3.99	0.0025	Better performance
ADD inattentive type ^e	-1.09 ± 0.26	4.20	0.0011	Fewer problems
Monitor ^b	-0.98 ± 0.27	3.59	0.0104	Fewer problems
Emotional Regulation ^b	-1.06 ± 0.30	3.54	0.0124	Fewer problems

